
JOURNAL OF COMPUTATIONAL PHYSICS 29, 431-445 (1978) 

Some Properties of Spheroidal Modes of a Homogeneous Elastic Sphere 

with Special Reference to Radial Dependence of Displacement 

T. ODAKA AND T. USAM~ 

Earthquake Research Institute, University of Tokyo, Tokyo, Japan 

Received January 9, 1978 

A ray-theoretical approach is attempted to interpret radial eigenfunctions (radial and 
tangential displacements) of spheroidal modes of a homogeneous elastic sphere. It is shown 
that surface displacements of the mode solutions agree well with those expected when 
relevant body waves are incident on the free surface. The possibility of interpreting am- 
plitude dependence on depth in terms of interference phenomenon of upgoing and down- 
going body waves is also demonstrated. The radial eigenfunctions are computed for a variety 
of spheroidal modes with relatively high radial mode numbers. An interesting feature is 
found in these functions: The number of node surfaces in the radial distribution of the 
radial displacement increases systematically for a given radial mode in conformity with a 
change of surface value of the tangential displacement from negative to positive with 
increasing colatitudinal order number. 

1. INTRODUCTION 

It is known for a plane layered problem that amplitude dependence of normal 
mode solutions on depth can be interpreted as interference between upgoing and 
downgoing waves (e.g., [l]). For a spherical problem, it is also possible to interpret 
normal mode vibrations in terms of interference between two waves traveling in 
opposite directions. In fact, amplitude dependence of free vibrations on a colatitudinal 
angle can be expressed in its asymptotic form as the superposition of two waves 
propagating in +8 and -0 directions. Radial dependence, however, has not been 
discussed from this point of view. As a special case, Odaka [2] pointed out that the 
radial distribution of displacement associated with very high radial modes of the 
spheroidal osciilation of a homogeneous sphere can be represented by the super- 
position of two traveling waves in +r and --Y directions. 

Brune [3] and Odaka [4] obtained the asymptotic frequency equation of the spheroi- 
dal oscillation of the homogeneous elastic sphere from relevant interference conditions 
of P and S wave rays. This result suggests that the amplitude dependence of a given 
normal mode vibration on depth is determined by interference of certain upgoing 
and downgoing waves. 

In this paper, an attempt is made of interpreting radial eigenfunctions (radial and 
tangential displacements), especially surface displacements, of the spheroidal vibration 
of the homogeneous elastic sphere in terms of ray theory. 
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The radial eigenfunctions are obtained in a compact form. It is instructive to 
compute, according to these expressions, the radial distribution of the radial and 
tangential displacements for relatively high radial modes, since properties of these 
modes have not been investigated in detail. 

2. RADIAL EIGENFUNCTIONS 

Analytical expressions obtained by Sato and Usami [5] for the radial eigenfunctions 
of the spheroidal oscillation of the homogeneous sphere can be reduced to more 
compact forms as 

where 

f(in , 5r> = CV)L@) - (W”>j,(~r>, 

g(j, , 5r) = -(4/r).h(5r> - {k2 - 24~ + l)/r2) j,(l’r) 
(2.2) 

(5 = h or k). 

U(r) and V(r) are the radial and tangential displacements and Es(r) and E,(r) are the 
radial (G) and tangential stresses. j,(<r) denotes the spherical Bessel function, a the 
radius of the sphere, h and k the wave numbers of P and S waves, respectively, p 
the rigidity of the sphere, and n the colatitudinal order number. A dot over a function 
stands for d/dr. Definition of two functions,fand g, similar to Eq. (2.2) was employed 
by Alterman and Abramovici [6] and Alterman and Aboudi [7], who defined them 
by using the modified Bessel or the modified spherical Bessel functions. The charac- 
teristic equation of the free spheroidal oscillation is given by 

E,(u) = 0. (2.3) 

In computing the radial eigenfunctions, it is convenient to use those which are 
normalized by the surface radial displacement. They are 

nV(r) = nV(r)/U(a). (2.4) 

The factor n for the tangential motion comes from the derivative of the associated 
Legendre function included in the general solution. 

For n = 0, V and E, do not exist, and the radial functions are reduced to 

3-1 = ~dhr), &W = &.A , hr) (2.5) 
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3. INTERFERENCE PHENOMENON AND SURFACE DISPLACEMENTS 

The following equation derived by Ben-Menahem [8] links the mode scheme with 
the ray scheme and thus connects the order of the free oscillation with the angles of 
incidence of body wave rays. 

(n + 1/2)/p = a/C = a - sin 8,/v, = a . sin 0,/v, , (3.1) 

where p is the angular eigenfrequency of a normal mode, C the phase velocity asso- 
ciated with the mode, e9 and 8, are the angles of incidence of P and S waves at the 
surface of the sphere, and v, and v, are the P and S wave velocities. This relation has 
been further confirmed in various respects by Brune [3], Odaka and Usami [9], 
Sato and Lapwood [lo] and Odaka [4]. Especially, the works of Brune [3] and Odaka 
[4] suggest the strong connection between a certain type of interference phenomenon 
of body waves and normal mode vibrations. 

In this section, we calculate ray-theoretically the displacements caused by inter- 
fering upgoing and downgoing waves, and compare them with the corresponding 
displacements obtained by normal mode theory. Following Odaka [4], it is convenient 
to discuss two cases separately according to a value of phase velocity, C. Figure 1 
shows nondimensional eigenfrequencies, 7 (in units of v,/2n-a) as a function of 
colatitudinal order number, 12. These were computed from Eq. (2.3) for 56 radial 
modes, i = 1 being the fundamental mode. Dashed and chain lines satisfy the rela- 
tion C = v, and C = v, , respectively. It is found that the fundamental mode is 
situated in the region C < v, . Hence, there are no actual rays corresponding to this 
mode. For numerical computation, X = p is assumed in the present paper. 

(i) v, < C < v, . This condition corresponds to the case when S waves are 
incident on the free surface and are totally reflected-there. If we restrict our interest 
to high-frequency motions near the free surface, the plane-wave and plane-boundary 
approximations will be valid for the present problem. Then, it is easy to get amplitude 
dependence of standing waves on depth resulting from interference between an 
incident plane S wave (upgoing), and a reflected plane S wave (downgoing) and a 
reflected P wave propagating along the free surface. Denoting vertical and horizontals 
displacements, respectively, as u and v, and taking the elastic half space in negative z 
direction (z = 0 being the surface), we get 

u(z)/u(O) = 2 sin2 8, cos X + {(v,/vJ cos 2 2e,/(2Y cos e,)} sin x 

+ cos 28, e exp( Ypz/v,), 

where 

v(z)/u(O) = {(v,/v~) cos2 2e,j(2Y sin e,)} cos X - sin 28, sin X 

+ ~(v,/v,> sin es ~0s 2em exp(Ypz/vv), 

x = pz ~0~ eslv, and Y = [(v,/v,)~ sin20, - l]l/2. 

(3.2) 
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Normalization by the vertical surface displacement is done for the convenience of 
comparing with the normal mode solutions, Eq. (2.4). In the following arguments, 
u and v imply the displacements obtained by means of ray theory, and U and V by 
normal mode theory. Figure 2 shows a comparison of two functions of surface 
displacement, v(O)/u(O) and nV(a)/u(a), plotted against the angle of incidence of an S 
wave. The former is denoted by a solid curve and the latter by circles (the radial 
mode i = 5), triangles (i = 15) and squares (i = 40) according to the radial mode 
numbers. The angle 8, for each normal mode is determined from Eq. (3.1). Agreement 
between two functions based upon ray theory and normal mode theory is very good, 
especially at large angles of incidence. At angles near the critical angle, the above 
approximation becomes unsuccessful, though the general trends of two functions 
with angle are consistent. Amplitude dependence of vertical and horizontal displace- 
ments on depth is depicted in Fig. 3. Solid and dashed curves, respectively, show 
O(r) and nF(r) for three normal modes. Solid and open circles are u(z)/u(O) and 
u(z)/u(O), respectively, calculated for three angles of incidence of an S wave corre- 
sponding to respective normal modes by means of Eq. (3.1). Near the free surface, 
agreement of two quantities, the displacements obtained by normal mode theory 
and ray theory, is very good, which illustrates that normal mode vibrations can be 
interpreted by interference between upgoing and downgoing body waves inherent in 
respective modes. To improve the agreement of two quantities at deeper places, we 
have to take the effect of sphericity of the surface into consideration. 

(ii) vg < C. Following Odaka [4], we have the interference equations as 

1 = K, + XL] expGW,/C - 2a cos OS/us) + 77/2)1, 

x = [XR,, + R,,l exp[Mad,/C - 2a cos 0,/t,,) + r/2}], 
(3.3) 

where 

A, = T - 20,, A,=r-228,. (3.4) 

x is the amplitude of a P wave incident upon the free surface, and R,, , R,, , R,, , 
and R,, are the reflection coefficients. i denotes the imaginary unit. Amplitude of an S 
wave incident on the surface is normalized to be unity. 

Eliminating x from Eq. (3.3), it is proved that the above equations are equivalent 
to the characteristic equation, Eq. (2.3), at high frequencies (Brune [3], Odaka [4]). 
As noted by Tolstoy and Usdin [l 11, who discussed dispersive properties of waves in 
plane stratified media, x has a special value depending upon the angle of incidence 
and the wave number. Then it can be expected that a normal mode vibration as a 
function of depth is caused by interference between two incident waves, ,S with the 
unit amplitude and P with the amplitude x, and four reflected waves with the ampli- 
tudes, 4, , R,, , XL , and XL- , respectively. Under high-frequency approximations, 
resulting surface displacements, u(O) and v(O), can be calculated for each normal mode. 
In Figs. 4 and 5, circles and triangles show thus obtained values of the normalized 
horizontal surface displacement, v(O)/u(O), as a function of Bz, (or 19,). A value of x for 
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0 i= 5 
* i = 15 Normal mode (nW/U) 
. i=40 

Ray theory (v/u) 

FIG. 2. Horizontal surface displacement normalized by vertical surface displacement plotted 
against angle of incidence of S wave (in degrees). 
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FIG. 4. Horizontal surface displacement normalized by vertical surface displacement plotted 
against angles of incidence of P and S waves (in degrees). 
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FIG. 5 Horizontal surface displacement normalized by vertical surface displacement plotted 
against angles of incidence of P and S waves (in degrees). 
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each normal mode was determined with the aid of Eq. (3.1) and either of the two 
equations (3.3) together with the eigenfrequencies obtained from Eq. (2.3). x, U, and v 
are generally complex numbers, and absolute values of the displacement are plotted 
in the figures. A change from a positive value to a negative value or vice versa corre- 
sponds to a jump of phase angle of the function. For comparison with these ray- 
theoretical values, the normal mode solutions, nV(a), are shown by solid and dashed 
curves. Coincidence of two patterns is satisfactory, demonstrating the validity of 
Eq. (3.3). Recalling that the reflection coefficients are the smoothly and slowly changing 
functions of the angles of incidence, we find that rapid changes of surface displace- 
ments with the angles of incidence arise from the nature of x. Thus, the ratio of 
amplitude of an incident S wave to that of an incident P wave will play an important 
role in composing the radial functions of the normal modes by interference of body 
waves. 

A more elegant method of connecting the radial functions, Eq. (2.1), with the ray 
scheme is presumably to represent those functions in terms of spherical reflection 
coefficients defined, for example, by Alterman and Abramovici [6]. 

4. RADIAL DISTRIBUTION OF DISPLACEMENTS 

Calculation of the radial eigenfunctions of displacements is performed for a number 
of modes on the basis of Eq. (2.1). In Figs. 6,7, and 8, solid and dashed arrows, respec- 
tively, indicate deepest positions of S and P rays associated with respective normal 
modes by means of Eq. (3.1). Denoting those radial distances by rdS and rdp, respec- 
tively, we have 

(n + 1/2)/p = rdD/v, = rd8/v, . (4-U 

For the modes of which phase velocities lie between v, and v8, rdp becomes larger 
than the radius of the sphere, a. 

We can recognize some interesting features in the radial distributions of displace- 
ments in connection with the deepest positions of the rays. The figures illustrate that, 
at r < rdS, the displacements decrease exponentially with depth. Similar patterns can be 
seen at r < rdp, provided that high-frequency motions (motion as a function of r) 
are eliminated by filtration from the radial distributions (see Fig. 7). This feature 
can be explained qualitatively in terms of asymptotic properties of a Bessel function, 
because at large n it asymptotically has a sinusoidal form or an exponentially decaying 
form according to whether its argument is larger than its order or not. 

At a region near r = rd*, the radial component is predominant, which is characteris- 
tic of an S wave near its deepest point. On the other hand, the tangential component is 
superior to the radial one near r = r J’, suggesting the character of a P wave near 
its deepest point. 

It is probable that high-frequency motions (as a function of r) in the radial functions 
are due to interference between upgoing and downgoing S waves, and low-frequency 
motions are due to interference of P waves. 
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RADIAL Dt STRI BUT,iON OF DISPLACEMENT ;EzsrnF - u(r) 
-----t-d(r) 

MODE i=2 i-3 i =4 i-5 

FIG. 6. Radiai component on the surface (r = 1) is taken as unity. 
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l-OMOGEEOUS SPHERE n= 200 - U(r) 

SPHEROIDAL MODES -----n.V(r) 

i= 30 

r - r c 

C 

0.7- 

0.6 0.6 

i=40 i=50 

FIG. 7. Radial distribution of radial and tangential displacements. Radial component on the 
surface (r = 1) is taken as unity. 

The radial mode number, i, is defined in this paper in the order of increasing 
frequency for a given order number, n, and the fundamental mode is denoted as 
i = 1. As noted by Alsop [12] and Anderssen et al. [13], however, this number is not 
consistent with the number of node surfaces in the radial eigenfunctions of displace- 
ments. Such a situation is well illustrated in Fig. 8, which shows radial dependence 
of radial (solid curve) and tangential (dashed curve) displacements for the radial mode 
i = 15. When rr is not very large, the number of nodes is far smaller than the radial 
mode number. Here, we can find some interesting relations between the surface value 



R
AD

IA
L 

DI
ST

RI
BU

TI
O

N 
O

F 
DI

SP
LA

CE
M

EN
T 

HO
M

O
G

EN
EO

US
 

SP
HE

RE
 

SP
HE

RO
ID

AL
 

M
O

DE
S 

- 
U

(r)
 

(M
O

DE
 

i=
 1

53
 

-_
__

_-
- 

“.j
Q

) 
n=

 II 
n=

 19
 

n=
20

 
n=

 2
7 

n=
34

 
n=

 3
5 

P m
 

n=
43

 
n=

54
 

n-
55

 
n=

 6
6 

n=
83

 
n=

84
 

FI
G.

 
8.

 
Ra

di
al

 
co

m
po

ne
nt

 
on

 
th

e 
su

rfa
ce

 (
r 

= 
1)

 is
 ta

ke
n 

as
 u

ni
ty

. 



ODAKA AND USAMI 

I  
,  



SOME PROPERTIES OF SPHEROIDAL MODES 445 

of the function nV(r), and the number of nodes. A change of the surface value, 
12 V(a) from negative to positive as a function of IZ is in any case followed by an increase 
by one in the number of nodes of U(r), which occurs, in this example, between n = 19 
and 20, 34 and 35, 54 and 55, and 83 and 84. These modes show nearly horizontal 
motion at the surface and generally have very large displacements inside the sphere 
compared with the vertical surface displacement which is normalized as unity. We call 
the maximum order number where the final change in sign of nV(u) from minus to 
plus occurs, as the critical order number, which is intrinsic in each radial mode. In the 
above case (i = 15), it is n = 84. When n is larger than the critical value, we can 
always identify II - 1 nodes in the radial distribution of U(r). The above properties 
are commonly observed for all radial mode numbers. 

Figure 9 shows distribution of positive (+) and negative (-) signs of the function 
n&u) for a given mode (i, n). Changes in the signs with increasing n are systematic 
for every radial mode. In Fig. 9, the critical modes are situated on the line drawn 
from the lower left corner to the upper right corner (indicated by arrows), which are 
also shown in Fig. 1 by circles. All the modes belonging to the right-side region of 
these modes have n - 1 nodes in U(r). In this region, when the sign of nr(u) changes 
from plus to minus, the number of nodes in n@-) increases from IZ - 1 to n. It is 
found that all the modes with the phase velocity between U, and U, have IZ - 1 nodes in 
a(r). These modes have properties similar to those of torsional modes in various 
respects. 

In order to make the radial mode number a better indicator of the number of nodes 
in the radial eigenfunctions, we have to draw any other frequency curves than those 
shown in Fig. 1 in the left-side region of the critical mode. 
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